Milkiwean Vital Start Feeding Programme # Market evolution # Different levels of 'reducing antimicrobial resistance' > define per customer status (examples) - 1. Reducing AGP and antibiotics to legal levels, respecting withdrawal times - Number, dosage - 2. Without AGP - Eg. EU since 2006, TNCanada - 3. Without antibiotics critically important for humans - Eg. colistine - 4. Without preventive (broad spectrum) antibiotics /high ZnO/ high Cu - Eg. broad spectrum antibiotics, high Cu> trend and legislation EU - 5. Without curative antibiotics - 6. Without ionophores ### Antibiotic reduction strategies require an integrated approach for total production chain optimization **Trouw Nutrition integrated feed-farm-health approach** Milkiwean Vital Start ### **Feed Management** - Raw material choice and quality - Feed safety, hygiene and preservation - Diet specification and nutrient composition - Feed form and presentation ### **Farm Management** - Biosecurity - Animal management - Cleaning & disinfection - Housing and climate - People management& training ### **Health management** - Infection chain & Prevention chain - Transition periods - Intestinal health - Diagnosis & monitoring - Medication & vaccination # The Milkiwean Programmes are key in Feed Management **Efficient Start** **Cost conscious producer** **Best Start** Performance driven producer **Vital Start** Health challenged producer ### Milkiwean Vital Start: BACKGROUND ### Milkiwean Vital Start: Background ### Milkiwean Vital Start: Background ### How to act within this pathogenesis? - Keep piglets eating - Adjust formulation to impaired gut function ### KEY FEATURES OF THE MILKIWEAN VITAL START PROGRAMME ### **PALATABILITY** Crafted to support continuous feed intake around weaning ### WATER Carefully controlled to guarantee optimal development ### **FEED SAFETY** Designed to ensure complete feed protection ### **FIBRES** Formulated to boost gut development and microflora ### PROTEIN SOURCES Carefully selected to target optimal digestibility ### AMINO ACID PROFILE Specially designed to ensure normal immune system function ### SPECIALTY INGREDIENTS Combined to support the gut microflora and health # **Trial results** ### What has been done? More than 20 years R&D unravelling nutritional physiology in non-medicated environment - In-house - in cooperation with universities ### **Development of MKW Vital Start** - <u>Development research:</u> TN BeNeLux + TN Canada + TN Spain + Nanta - <u>Field trials:</u> Belgium, Netherlands, Denmark, Italy, Spain, Canada, Poland - Starting: Thailand, Germany, France, Slovakia, Czech - <u>Coming:</u> Brasil, Mexico, China,Ireland, UK ### Milkiwean Vital Start: results BNL | Cost factor/piglet, € | Negative control | Positive control | MKW VITAL | BENCH | |-----------------------|------------------|------------------|-------------|-------| | Feed and water | 10,32 | 10,79 | 11,1 | 11,07 | | Treatments | 0,02 | 0,02 | 0,02 | 0,02 | | Mortality | 1,72 | 1,85 | 0,38 | 1,89 | | OVERALL COST/PIGLET | 12,06 | 12,66 | <u>11,5</u> | 12,98 | # Milkiwean Vital Start: results Italy # Milkiwean Vital Start: results Italy ### Milkiwean Vital Start: results Denmark ### Milkiwean Vital Start: results Denmark ### Milkiwean Vital Start: results Denmark | Cost factor/piglet | Negative
control | Positive
control | MKW VITAL | BENCH 1 | BENCH 2 | BENCH 3 | |---------------------|---------------------|---------------------|--------------|---------|---------|---------| | Feed and water | 10,06 | 10,5 | 10,47 | 10,21 | 10,16 | 10,26 | | Treatments | 0,21 | 0,1 | 0,02 | 0,25 | 0,2 | 0,06 | | Mortality | 1,18 | 1,1 | 0,63 | 0,85 | 1,15 | 1,03 | | OVERALL COST/PIGLET | 11,45 | 11,7 | <u>11,12</u> | 11,31 | 11,51 | 11,35 | ### KEY FEATURES OF THE MILKIWEAN VITAL START PROGRAMME ### **PALATABILITY** Crafted to support continuous feed intake around weaning ### WATER Carefully controlled to guarantee optimal development ### **FEED SAFETY** Designed to ensure complete feed protection ### **FIBRES** Formulated to boost gut development and microflora ### PROTEIN SOURCES Carefully selected to target optimal digestibility ### AMINO ACID PROFILE Specially designed to ensure normal immune system function ### SPECIALTY INGREDIENTS Combined to support the gut microflora and health # **Palatability** # **Keep piglets eating** ### How to act within this pathogenesis? - Pre- and post weaning feed management - Diets respecting inherent palatability preference # Milkiwean Vital Start: feed solutions Palatability # Milkiwean Vital Start: feed solutions Palatability ## **Protein sources** # Milkiwean Vital Start: feed solutions Protein Be carefull with protein Trouw Nutrition R&D (2015) # Milkiwean Vital Start: feed solutions Protein - Average daily protein intake after E. Coli infection and risk for PWD - Too high protein intake risk for diarrhea Average daily protein intake, g/d Heo, et al, 2014 | Daily feed | | | | | Crude protein levels | g) | | | | |-------------------|-------|--------|----------|-----------------|---|----------|-------------|--------|-----| | intake
(g/day) | 150 | 155 | 160 | 165 | 170 | 185 | 190 | 195 | 200 | | 150 | 22,5 | 23,25 | 24 | 24,75 | isility of | 27,75 | 28,5 | 29,25 | 30 | | 175 | 26,25 | 27,125 | 28 | | tion | 2,375 | 33,25 | 34,125 | 35 | | 200 | 30 | 31 | | Digo | cid (10 cc | 7 | 38 | 39 | 40 | | 225 | 33,75 | 34.0 | | in ⁰ | acceptects, ces | `5 | 42,75 | 43,875 | 45 | | 250 | 37,5 | 3. | N | W | tibility acid (ratios) acid (ratios) te effects choices actor acto | 5 | 47,5 | 48,75 | 50 | | 275 | 41,25 | 42,6. | | 73- | lient chi factor | ۲
۲ | 52,25 | 53,625 | 55 | | 300 | 45 | 46,5 | | - ore | sain riousi, yieu | 163 | 57 | 58,5 | 60 | | 325 | 48,75 | 50,375 | | lue. | nitricio ingreci. | > | 1,75 | 63,375 | 65 | | 350 | 52,5 | 54,25 | | anti-1 | ting IIIo | | 36,5 | 68,25 | 70 | | 375 | 56,25 | 58,125 | | *0 | te effect
edient choices
edient choices
dient choices
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edient
edi | ,5/5 | 71,25 | 73,125 | 75 | | 400 | 60 | 62 | L | IUGO | edient Cr.
Butritional factor
Chutritional fac | 74 | 76 | 78 | 80 | Too high protein intake risk for di mple??? → There i There is more than meets the eye # **Protein digestibility in weaners** | Source | Ileal digestibility | Std | |---------|---------------------|-----| | SBM 1 | 77.0 | 6.8 | | SBM 2 | 77.7 | 0.5 | | SBM 3 | 79.3 | 4.0 | | SBM 4 | 81.7 | 4.4 | | SBM 5 | 82.1 | 3.5 | | SBM 6 | 83.2 | 3.7 | | Average | 80.2 | 3.8 | Analyze and monitor your sources!! # How much soybean meal can we use? ### Incidence suboptimal faecal scoring # Smartly combining protein sources - better growth and less diarrhea incidents # **Amino acids** # Milkiwean Vital Start: feed solutions Amino acids ratios | AA:Lys, DIS | Sève (1994) | NRC (1998) | BSAS (2003) | NRC (2012) | INRA ⁽¹⁾ | |-----------------|-------------|------------|-------------|------------|----------------------| | Lys:Lys | 100 | 100 | 100 | 100 | 100 | | Thr:Lys | 65 | 62 | 65 | 59 | 65 | | Met:Lys | 30 | 27 | 30 | 29 | 30 | | (Met + Cys):Lys | 60 | 57 | 59 | 55 | 60 | | Trp:Lys | 18 | 18 | 19 | 16 | 22 | | Val:Lys | 70 | 68 | 70 | 63 | 70 | | lle:Lys | 60 | 54 | 58 | 51 | 52-60 ⁽²⁾ | | Leu:Lys | 100 | 101 | 100 | 100 | 101 | | Phe:Lys | 50 | 61 | 57 | 58 | 54 ⁽³⁾ | | (Phe + Tyr):Lys | 95 | 94 | 100 | 93 | - | | Tyr:Lys | - | - | - | - | 40 | | His:Lys | 32 | 32 | 34 | 34 | 31 | # Milkiwean Vital Start: feed solutions Amino acid ratios # **Summary of results field trials (AMINOPT)** #### Growth | Study | n | Mort. | Medication | | |----------|------|-------|------------|---------------------| | NL2a | 350 | 2,6 | Non | — | | NL2B | 350 | 1,1 | Non | | | Canada 2 | 768 | 0,5 | Ab | 1 | | Spain | 400 | 7,1 | AB+ZnO | ** | | NL1b | 170 | 2,9 | Non | * | | Canada1 | 768 | 2,6 | Ab | ■ ** | | NL1a | 528 | 1,7 | Non | | | Overall | 3334 | 2,4 | | | 0.1 0.05 Mean difference FE 0.15 #### **Feed efficiency** | Study | n | Mort. | Medication | | | |---------|------|-------|------------|---|------------| | NL2b | 350 | 1,1 | Non | - | -1 | | NL1a | 528 | 1,7 | Non | - | -1 | | Canada1 | 768 | 2,6 | Ab | - | — — | | Canada2 | 768 | 0,5 | Ab | - | - | | NL1b | 170 | 2,9 | Non | - | | | NL2a | 350 | 2,6 | Non | F | I | | Spain | 400 | 7,1 | AB+ZnO | | | | Overall | 3334 | 2,1 | | | | #### **Feed intake** | Study | n | Mort. | Medicatio | n | | |---------|------|-------|-----------|------------|------------------| | NL2a | 350 | 2,6 | Non | - | 1 | | Spain | 400 | 7,1 | AB+ZnO | l | 1 | | NL1b | 170 | 2,9 | Non | - | •—— • | | Canada2 | 768 | 0,5 | Ab | I — | | | NL2b | 350 | 1,1 | Non | l- | - | | NL1a | 528 | 1,7 | Non | - | - | | Canada1 | 768 | 2,6 | Ab | | * | | Overall | 3334 | 2,1 | | | | #### **Mortality** | | • | | | | |---------|------|-------|------------|----| | Study | n | Mort. | Medication | | | Spain | 400 | 7,1 | AB+ZnO - | ** | | Canada1 | 768 | 2,6 | Ab ⊢■− | * | | NL2a | 350 | 2,6 | Non | * | | NL1b | 170 | 2,9 | Non - | | | NL1a | 528 | 1,7 | Non | | | Canada2 | 768 | 0,5 | Ab | | | NL2b | 350 | 1,1 | Non | | | Overall | 3334 | 2,1 | * | | -5 Mean difference Mortality Mean difference FI 10 ## **Fibres** ## **Fibres analysis** Non-Digestible Oligosaccharides **Soluble Hemicellulose** **Resistant Starch** **Insoluble Hemicellulose** Cellulose Lignin # Milkiwean Vital Start: feed solutions Fibre | Effect | sol. fibres | insol. fibres | - | |-----------------------|--------------|---------------|------------------------| | Fibre source | Pectin | Wheat bran | Inulin / oligofructose | | | Guar gum | Cellulose | | | Fermentation | ++ | 0/+ | ++ | | pH chyme | ↓ | 0 | \ | | Stomach emptying | ↓ | ↓? | ? | | Rate of passage | ↓ | ↑ | ? | | Weight mucosa | ↑ | ? | ↑ | | Binding of bile salts | + | 0 | ? | | Weight faeces | 0 | ↑ | ↑ | | Glucose absorption | More gradual | 0 | More gradual | # Milkiwean Vital Start: feed solutions Fibre Physiological effects ## Fibres and their effect on scouring #### Fibre effect # **Specialty ingredients** ## **Our Swine Health strategy** different mechanism for achieving gut health # Our Swine Health strategy different mechanism for achieving gut health ## Reduce buffer capacity of feed # Strong acidifiers - Formic acid and Fumaric acid strongest acidifiers - Formic acid 34% higher acid equivalent - Formic acid 60% cheaper compared to Fumaric acid # **Our Swine Health strategy** ## different mechanism for achieving gut health Acidifiers Gut health modifier ### Phenolic Compounds positively influencing tight junction #### **Tight junctions bind cells together** - thereby forming a barrier that prevents molecules from getting through - helps to maintain the polarity of cells. The phenolic compound supports the intestinal barrier integrity, shown by an upregulated expression of tight junction proteins CLD-1 & CLD-5 # Our Swine Health strategy different mechanism for achieving gut health ## **Antibacterial effect of organic acids** Selko laboratory Tilburg and Trouw Nutrition Masterlab Boxmeer – based on in vitro (MIC) studies from 2010 to 2019 | | Gram- bacteria | Gram+ bacteria | |--------------------|----------------|----------------| | Formic acid | +++ | + | | Citric acid | ++ | - | | Sorbic acid | ++++ | +++ | | Benzoic acid | ++++ | ++ | | Lactic acid | +++ | - | | Propionic acid | ++ | + | | Acetic acid | + | + | | Fumaric acid | ++ | + | | C8 | ++++ | +++ | | C10 | ++++ | +++ | | C8, C10 mix | +++++ | ++++ | | C12 | - | ++++ | | tic8,1C10, C12 mix | ++++ | +++++ | # Synergistic antibacterial effect of blends ### In vitro lab testing - Single ingredients - Blends or acids - --> Compare measured result with calculated result Lab results show a synergistic antibacterial effect of blends of organic acids | type II (IB | | | |----------------|---|--------------|---------------------------------|---------|----------|---------------------------|-----------------|------------------------|-----------------------|-------------------|-------------------------|----------------|-----------------|---------------|----------------|-------------------|--------------|---------------------|---------|-----------------|--------------------------|-----------------|-----------------|-----------------|---------------------|--------------|-----------------|--------------------------|-----------------------------|---------------------|-----------------| | | | Voor resetie | na reactie (final product | MIC % | MIC | (T=240
0.5 | 0.5
0.5 | HC (T=4
0.5 | 50 (T=4
0.5 | HC (T=24)
0.25 | .50 (T=2-
0.25 | 0.25 | 50 (T=2
0.25 | 0.25 | 0.25 | C (T=2
0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0 (T= 2)
0.25 | 0.25 | 0 (T=20
0.25 | 0.25 | 0 (T=2)
0.25 | 0.25 | 50 (T=2
0.25 | 0.25 | 0.125 | IC (T=2 | 50 (T=
0.25 | | | Acetic sold 80% Liq | 11.8 | 3.44 | | | 7.86 | 7.86 | 7.86 | 7.86 | 3.93 | 3.93 | 3.93 | 3.93 | | | | | 3.93 | | | | 3.93 | | | 3.83 | 3.93 | 3.93 | 3.93 | 1.97 | 3.93 | 3.93 | | | Ammonia 25% Liq
Formic acid 85% Liq | 27.2 | Formic sold 93% Liq | 4.7 | | _ | Lactic acid 80% Liq Food
Propeless alecol 33% Liq | 0.3 | 0.8 | | | 0.44 | 0.44 | 0.44 | 0.44 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.11 | 0.22 | 0.22 | | HP Fysal Liq | Propionic acid 33% Liq | 15.5 | 15.35 | 5 | | 10.33 | 10.33 | 10.33 | 10.33 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 5.16 | 2.58 | 5.16 | 5.16 | | | IHP Sorbic scid | 0.5 | 0.5 | | | 0.22 | 0.22 | 0.22 | 0.22 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.06 | 0.11 | 0.11 | | | Water
IHP Citric Ascorbic Acid I | 0.5
0.2 | 29.61 | an cital riscordic ricid i | | 0.01 | Vrije formic acid
Ammonium formate | | 18.83
25.17 | | | 20.45 | 20.45 | 20.45 | 20.45 | 10.23 | 10.23 | 10.23 | 10.23 | | 10.23 | 10.23 | 10.23 | 10.23 | 10.23 | | 10.23 | 10.23 | | | 10.23 | 10.23 | 10.23 | 10.23 | 5.11
4.99 | 10.23 | 10.23 | | | Anmonus rormate | | 100 | | | 53.47 | 59.47 | 59.47 | | 29.74 | 29.74 | | | | | 29.74 | 29.74 | 29.74 | | | | | | 29.74 | | 23.74 | | 29.74 | 14.87 | 29.74 | 23. | | | | | | | Conver | 99.10 | 99.10 | 33.10 | 33.10 | 128.83 | 128.83 | **** | 2222 | **** | 2222 | **** | 2222 | **** | 2222 | **** | 2222 | **** | 8888 | **** | 8888 | **** | 2222 | **** | 143.70 | **** | 128.8 | | | | | | | | obscill | er nisers | ree (IRC | -MC00 | his coli - | FA (IRC- | coli - F | sei m | Fateriti | as och | | riam (II | ratunki | R ises | Heidelb | era (III) | Infanti | e and | nerfrine | ese (II | nerfrine | nens (III | can cain | type II (IR | a ania t | tene D | | | | | | | MIC | (T=240 | C50 (T=24 | HIC (T=4 | 50 (T=4 | IIC (T=24 | 50 (T=2 | IC (T=2 | 50 (T=2 | C (T=25 | 60 (T=2 | C (T=2 | 50 (T=2 | IC (T=2 | 50 (T=2 | C (T=2 | 60 (T=20 | C (T=2 | 0 (T=20 | C (T=2 | 0 (T=2 | C (T=2 | 50 (T=2 | IC (T=2 | C50 (T=24) | IC (T=2 | 50 (T: | | | Acetic scid 80% Liq | Voor reactie | na reactie (final product)
9 | MIC % | | 0.5
7.49 | 0.25 | 7,49 | 0.25 | 0.25 | 0.25 | 0.25
3.75 | 3.75 | 0.25 | 3.75 | 3.75 | 0.25
3.75 | 0.25
3.75 | 3.75 | 0.25 | 0.25
3.75 | 3.75 | 0.25 | 0.125 | 1.87 | 0.125 | 0.125 | 0.25
3.75 | 0.125 | 0.25 | 0.125 | | | Ammonio 25% Liq | 22 | Ť | Benzoic Acid 33% Flakes
Copper sulphate 5ag 25% | 0.5
0.88 | 0.5
0.22 | | | 0.20 | 0.10 | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.05 | 0.05 | 0.05 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | | | Formic acid 85% Liq | 26.21 | 0.22 | Σ | | 0.04 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | | IHP Salko PH | Formic acid 99% Liq
Emulsifier Polysorbate 80 | 23,41 | 0.3 | | | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | | EU EU | Propionic acid 33% Liq | 0.3
15.3 | 15.15 | | | 10.23 | 5.11 | 10.23 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 5.11 | 2.56 | 2.56 | 2.56 | 2.56 | 5.11 | 2.56 | 5.11 | 2.56 | | | Zinc acetate 2aq 30% | 0.2 | 0.2 | Σ | | 0.05 | 0.02 | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | | | IHP Citric Ascorbic Acid I
water | 0.1 | 0.1
23.49 | Phije formic sold Ammonium formate | | 30.59
20.36 | | | 33.23
16.14 | 16.61 | 33.23
16.14 | 16.61 | 16.61
8.07 | 16.61 | 16.61
8.07 | 16.61 | 16.61 | 16.61 | 16.61 | 16.61 | 16.61
8.07 | 16.61 | 16.61 | 16.61 | 16.61 | 16.61 | 8.31
4.04 | 8.31 | 8.31
4.04 | 8.31
4.04 | 16.61 | 8.31
4.04 | 16.61 | 8.31
4.04 | | | | | 100 | | SUM | 67.40 | 33.70
124.87 | 67.40 | | 33.70
124.87 | | 33.70 | | 33.70 | | 33.70 | | 33.70 | | 33.70 | | 33.70 | | 16.85 | | 16.85 | | 33.70 | 16.85 | 33.70 | 16.8 | | | | | | | Conver | 91.17 | 124.87 | 91.17 | 2222 | 124.81 | 124.81 | | 2222 | **** | 2222 | | 2222 | | 3333 | | | | 8888 | 61.72 | 161.72 | 141.72 | 161.72 | | 141.72 | | 161.1 | | | | | | | ec. | tobacil | lles plants | erem (IR | C-MC00 | :hia coli - | F4 (IRC | coli - | ESBL (I | Enterit | tidis (IF | Typhin | grism (I | Iratyphi | Вјата | Heidell | berg (IA | la Infan | tis (IRC | perfri | gens (II | perfri | gens (| liccus sui: | s type II (II | Rus suis | type | | | | Voor reactie | na reactie (final product | E MIC 2 | MIC | 0.25 | 0.25 | 0.25 | 0.25 | O.25 | 0.25 | 0.25 | 0.25 | | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | #C (T=2
0.25 | 0.25 | IC (T=2
0.25 | 0.25 | 0.125 | 0.125 | 0.125 | | #C (T=2
0.0625 | 0.03125 | 0.0625 | 2 50 (T
0.06 | | | Acetic scid 80% Liq | 9.85 | 7.88 | В | | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 1.64 | 1.64 | 1.64 | 1.64 | 0.82 | 0.41 | 0.82 | 0.8 | | | Ammonis 25% Liq
Emulsifier Bredol 65 | 9.5 | 17.5 | Formic acid 85% Liq | 15.6 | Formic scid 99% Liq
MCFA C8C10 | 13.1 | C8 7.2 | ΣE | | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 125 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 125 | 125 | 1.25 | 1.25 | 125 | 0.62 | 0.62 | 0.62 | 0.62 | 0.31 | 0.16 | 0.31 | 0.2 | | | | | C10 5.8 | Ε. | | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.43 | 0.43 | 0.43 | 0.43 | 0.21 | 0.11 | 0.21 | 0.2 | | P Selko 4 Heal | MCFA C8C10C12 | 7.5 | C12 1.8 | | | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.12 | 0.12 | 0.12 | 0.12 | 0.06 | 0.03 | 0.06 | 0.0 | | | Propylene glycol 99% Liq
Propionic scid 99% Liq | 18,9 | 18.7 | | | 6.31 | 6,31 | 6.31 | 6,31 | 6.31 | 6,31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 6.31 | 3.16 | 3.16 | 3.16 | 3.16 | 1.58 | 0.79 | 1.58 | 1.5 | | | IHP Sorbic soid | 0.45 | 0.45 | | | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.05 | 0.05 | 0.05 | 0.05 | 0.03 | 0.01 | 0.03 | 0.0 | | | water | | 11.76 | 5 | Phije formic scid | | 19.81 | | | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 10.76 | 5.38 | 5.38 | 5.38 | 5.38 | 2.69 | 1.34 | 2.69 | 2.6 | | | Ammonium formate | | 8.75 | | | 26,31 | 26,3 | 3.49 | | 3,49
26,31 | | 3,49 | 3.49 | 3.49
26.31 | | 3,49 | 3.49 | 3.49 | | 3,49 | | 3,49 | | 13.16 | 1.74 | 1.74 | 1.74 | 0.87
6.58 | 0.44 | 0.87 | | | | | C8 | 7.2 | | Conver 1 | 32.26 | 132.20 | 132.26 | 2222 | 132.26 | 132.26 | | 2222 | | 8888 | **** | 2222 | | 2222 | | 2222 | **** | 2222 | 145.41 | 145.41 | 145.41 | 145.41 | 151.99 | 155.28 | 8 151.99 | 151. | | | | C10 | 5.8
1.8 | - | | | | | | | | | | | | | | MIG | <i>tobacii</i>
C (T=24 | C50 (T=2 | even (IR
edilC (T=4 | C-MC00 | AIC (T=24 | F4 (IRC
C50 (T=2 | Coli - | ESBL (I | Esterit | 50 (T=2 | Typhin
IC (T=2 | SO (T= | iratypai
aC (T=2 | B java | Heidell | 50 (T=2 | IC (T=2 | 50 [T=2 | perfrie | gens (II
50 (T=2 | perfrii | gens (| CCUS SUI | s type II (II
IC50 (T=24 | Rus suis
IC (T=2 | 2 50 T | | | | | na reactie (final product | | | 1 | 0.5 | 1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.125 | 0.125 | 0.0625 | 0.063 | 0.5 | 0.125 | 0.125 | 0.031 | | | Acetic seid 80% Liq
Ammonis 25% Liq | 12.95 | 10.36 | 5 | | 22.25 | 11.12 | 22.25 | 22.25 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 11.12 | 2.78 | 2.78 | 1.39 | 1.39 | 11.12 | 2.78 | 2.78 | 0.7 | | | Citric acid Anh | 0.3 | 0.3 | 3 | | 0.16 | 0.08 | 0.16 | 0.16 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.02 | 0.02 | 0.01 | 0.01 | 0.08 | 0.02 | 0.02 | 0.0 | | | Formic scid 85% Liq | 17.8 | | _ | Formic scid 99% Liq
MCFA C8C10 | 7.5 | C8 7,2 | ΣE | | 4,99 | 2.50 | 4,99 | 4.99 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 0.62 | 0.62 | 0.31 | 0.31 | 2.50 | 0.62 | 0.62 | 0.1 | | | | | C10 5.8 | E | | 3.42 | 1.71 | 3.42 | 3.42 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 0.43 | 0.43 | 0.21 | 0.21 | 1.71 | 0.43 | 0.43 | 0.1 | | | | 7.5 | C12 1.8 | | | 0.95 | 0.47 | 0.35 | 0.35 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.12 | 0.12 | 0.06 | 0.06 | 0.47 | 0.12 | 0.12 | 0.0 | | Selacid GG L | | 13.9 | 13.76 | | | 18.57 | 9.29 | 18.57 | 18.57 | 9.29 | 9.29 | 9.29 | 9.29 | 9.29 | 9.29 | 3.23 | 9.29 | 9.29 | 9.29 | 9.29 | 9.29 | 9.29 | 9.29 | 2.32 | 2.32 | 1.16 | 1.16 | 3.23 | 2.32 | 2.32 | 0.5 | | Selacid GG L | Propylene glycol 99% Liq
Propionic scid 99% Liq | 0.55 | 0.55 | | | 0.49 | 0.25 | 0.49 | 0.49 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.06 | 0.06 | 0.03 | 0.03 | 0.25 | 0.06 | 0.06 | 0.0 | | ' Selacid GG L | Propionic sold 39% Liq
IHP Sorbic sold | 0.55 | | 3 | Selacid GG L | Propionic scid 99% Liq | 0.55 | 23.13 | | | | 15.47 | 32.34 | 32.94 | 16.47 | 15.47 | 16.47 | 15.47 | 16.47 | 16.47 | 16.47 | 15.47 | 16.47 | 16.47 | 16.47 | 15.47 | 16.47 | 16.47 | 4.12 | 4.12 | 2.06 | 2.06 | 16.47 | 4.12 | 4.12 | 1.0 | | Selacid GG L | Propionic acid 39% Liq
IHP Sorbic acid
water
Philip formic acid | 0.55 | 15.16 | | | 32.94 | Selacid GG L | Propionic acid 39% Liq
IHP Sorbic acid
water | 0.55 | | | | 32.94
34.33 | 17.17 | 34.33 | | 17.17
59.05 | 17.17 | 17.17
59.05 | 17.17 | 17.17 | 59.05 | 59.05 | | | | 59.05 | 59.05 | 59.05 | 59.05 | | | 7.38 | 2.15 | 17.17 | 4.23 | 4.29 | | | Selacid GG L | Propionic acid 39% Liq
IHP Sorbic acid
water
Italia formic acid
chamonium formate | C8 | 15.16
21.65
7.2 | 8 | SUM | 34.33 | | | 118.10 | | 17.17
59.05
99.52 | | 59.05 | | 59.05
99.52 | | 59.05 | 59.05
99.52 | 59.05 | | 59.05
99.52 | | 59.05 | 14.76
143.81 | 14.76 | | 7.38
151.19 | | 4.29
14.70
143.8 | | 3. | | Selacid GG L | Propionic seid 99% Liq
IHP Sorbic seid
water
byjo formic seid
Ammonium formate | | 15.16
21.65 | 2 | SUM | 34.33
118.10 | | 5 118.10 | 118.10 | 59.05 | 17.17
59.05
99.52 | 59.05 | 59.05 | 59.05 | 59.05
99.52 | 59.05 | 59.05 | 59.05 | 59.05 | 59.05 | 59.05
99.52 | 59.05 | 59.05 | 14.76 | 14.76 | 7.38 | 7,38
151,18 | 59.05 | 14.70 | 5 14.76 | 3. | | Type of blend | Factor synergistic effect | |--------------------|---------------------------| | Single ingredient | 0 | | Blend of 2 acids | 1.1 | | Blend of > 2 acids | 1.8 | ## **Our Swine Health strategy** different mechanism for achieving gut health Block attachment & mucosal immune support ### Hydrolyzed copra meal (MCM) #### **Contains Mannobiose** - Indigestible Disaccharide of Mannose - *In vitro* binding affinity to Salmonella - Supports a functional immune system #### Fermented Rye (FR) Rye overgrown with mycelium of Agaricus subrufescens Contains: beta glucans, glycoproteins, bioactive peptides, prebiotics, phenolic compounds - In vitro binding affinity to Salmonella and E.coli - Supports a functional immune system - Supports the growth beneficial bacteria ## A better performance during *E.coli* challenged conditions Conclusion: The acid blend + fysal Solute numerically increase feed intake and growth under E. coli challenged conditions. ## Selection, monitoring and treatment of raw materials ## Feed safety overview ## Water # Milkiwean Vital Start: feed solutions Water # Milkiwean Vital Start: feed solutions Water Gram negative bacteria (Salmonella, E.coli) struggle to survive at a pH below 4. - Only water of drinking quality - Use water acidification to support the weaned piglet stomach # **MKW Vital Start in practice** #### Phase 0 Less than 14 days 1 g – 2 g/piglet #### Phase 1 Less than 24 days 200 g – 1 kg/piglet #### Phase 2 14-23 days Less than 5 kg/piglet #### Phase 3 32-70 days Less than 20 kg/pig ## Milk replacer **Creep Feed** ### **Weaner Diet** LINK/Grower Diet #### Concentrates **Vario Taste** **Vario Protein** **Vario Fiber** **Vario Health** # Thank you