Milkiwean Vital Start Feeding Programme

Market evolution

Different levels of 'reducing antimicrobial resistance' > define per customer status (examples)

- 1. Reducing AGP and antibiotics to legal levels, respecting withdrawal times
 - Number, dosage
- 2. Without AGP
 - Eg. EU since 2006, TNCanada
- 3. Without antibiotics critically important for humans
 - Eg. colistine
- 4. Without preventive (broad spectrum) antibiotics /high ZnO/ high Cu
 - Eg. broad spectrum antibiotics, high Cu> trend and legislation EU
- 5. Without curative antibiotics
- 6. Without ionophores

Antibiotic reduction strategies require an integrated approach for total production chain optimization

Trouw Nutrition integrated feed-farm-health approach

Milkiwean Vital Start

Feed Management

- Raw material choice and quality
- Feed safety, hygiene and preservation
- Diet specification and nutrient composition
- Feed form and presentation

Farm Management

- Biosecurity
- Animal management
- Cleaning & disinfection
- Housing and climate
- People management& training

Health management

- Infection chain & Prevention chain
- Transition periods
- Intestinal health
- Diagnosis & monitoring
- Medication & vaccination

The Milkiwean Programmes are key in Feed Management

Efficient Start

Cost conscious producer

Best Start

Performance driven producer

Vital Start

Health challenged producer

Milkiwean Vital Start: BACKGROUND

Milkiwean Vital Start: Background

Milkiwean Vital Start: Background

How to act within this pathogenesis?

- Keep piglets eating
- Adjust formulation to impaired gut function

KEY FEATURES OF THE MILKIWEAN VITAL START PROGRAMME

PALATABILITY

Crafted to support continuous feed intake around weaning

WATER

Carefully controlled to guarantee optimal development

FEED SAFETY

Designed to ensure complete feed protection

FIBRES

Formulated to boost gut development and microflora

PROTEIN SOURCES

Carefully selected to target optimal digestibility

AMINO ACID PROFILE

Specially designed to ensure normal immune system function

SPECIALTY INGREDIENTS

Combined to support the gut microflora and health

Trial results

What has been done?

More than 20 years R&D unravelling nutritional physiology in non-medicated environment

- In-house
- in cooperation with universities

Development of MKW Vital Start

- <u>Development research:</u> TN
 BeNeLux + TN Canada + TN
 Spain + Nanta
- <u>Field trials:</u> Belgium,
 Netherlands, Denmark, Italy,
 Spain, Canada, Poland
- Starting: Thailand, Germany, France, Slovakia, Czech
- <u>Coming:</u> Brasil, Mexico, China,Ireland, UK

Milkiwean Vital Start: results BNL

Cost factor/piglet, €	Negative control	Positive control	MKW VITAL	BENCH
Feed and water	10,32	10,79	11,1	11,07
Treatments	0,02	0,02	0,02	0,02
Mortality	1,72	1,85	0,38	1,89
OVERALL COST/PIGLET	12,06	12,66	<u>11,5</u>	12,98

Milkiwean Vital Start: results Italy

Milkiwean Vital Start: results Italy

Milkiwean Vital Start: results Denmark

Milkiwean Vital Start: results Denmark

Milkiwean Vital Start: results Denmark

Cost factor/piglet	Negative control	Positive control	MKW VITAL	BENCH 1	BENCH 2	BENCH 3
Feed and water	10,06	10,5	10,47	10,21	10,16	10,26
Treatments	0,21	0,1	0,02	0,25	0,2	0,06
Mortality	1,18	1,1	0,63	0,85	1,15	1,03
OVERALL COST/PIGLET	11,45	11,7	<u>11,12</u>	11,31	11,51	11,35

KEY FEATURES OF THE MILKIWEAN VITAL START PROGRAMME

PALATABILITY

Crafted to support continuous feed intake around weaning

WATER

Carefully controlled to guarantee optimal development

FEED SAFETY

Designed to ensure complete feed protection

FIBRES

Formulated to boost gut development and microflora

PROTEIN SOURCES

Carefully selected to target optimal digestibility

AMINO ACID PROFILE

Specially designed to ensure normal immune system function

SPECIALTY INGREDIENTS

Combined to support the gut microflora and health

Palatability

Keep piglets eating

How to act within this pathogenesis?

- Pre- and post weaning feed management
- Diets respecting inherent palatability preference

Milkiwean Vital Start: feed solutions Palatability

Milkiwean Vital Start: feed solutions Palatability

Protein sources

Milkiwean Vital Start: feed solutions Protein

Be carefull with protein

Trouw Nutrition R&D (2015)

Milkiwean Vital Start: feed solutions Protein

- Average daily protein intake after E. Coli infection and risk for PWD
- Too high protein intake risk for diarrhea

Average daily protein intake, g/d

Heo, et al, 2014

Daily feed					Crude protein levels	g)			
intake (g/day)	150	155	160	165	170	185	190	195	200
150	22,5	23,25	24	24,75	isility of	27,75	28,5	29,25	30
175	26,25	27,125	28		tion	2,375	33,25	34,125	35
200	30	31		Digo	cid (10 cc	7	38	39	40
225	33,75	34.0		in ⁰	acceptects, ces	`5	42,75	43,875	45
250	37,5	3.	N	W	tibility acid (ratios) acid (ratios) te effects choices actor acto	5	47,5	48,75	50
275	41,25	42,6.		73-	lient chi factor	۲ ۲	52,25	53,625	55
300	45	46,5		- ore	sain riousi, yieu	163	57	58,5	60
325	48,75	50,375		lue.	nitricio ingreci.	>	1,75	63,375	65
350	52,5	54,25		anti-1	ting IIIo		36,5	68,25	70
375	56,25	58,125		*0	te effect edient choices edient choices dient choices edient edi	,5/5	71,25	73,125	75
400	60	62	L	IUGO	edient Cr. Butritional factor Chutritional fac	74	76	78	80

Too high protein intake risk for di

mple??? → There i

There is more than meets the eye

Protein digestibility in weaners

Source	Ileal digestibility	Std
SBM 1	77.0	6.8
SBM 2	77.7	0.5
SBM 3	79.3	4.0
SBM 4	81.7	4.4
SBM 5	82.1	3.5
SBM 6	83.2	3.7
Average	80.2	3.8

Analyze and monitor your sources!!

How much soybean meal can we use?

Incidence suboptimal faecal scoring

Smartly combining protein sources - better growth and less diarrhea incidents

Amino acids

Milkiwean Vital Start: feed solutions Amino acids ratios

AA:Lys, DIS	Sève (1994)	NRC (1998)	BSAS (2003)	NRC (2012)	INRA ⁽¹⁾
Lys:Lys	100	100	100	100	100
Thr:Lys	65	62	65	59	65
Met:Lys	30	27	30	29	30
(Met + Cys):Lys	60	57	59	55	60
Trp:Lys	18	18	19	16	22
Val:Lys	70	68	70	63	70
lle:Lys	60	54	58	51	52-60 ⁽²⁾
Leu:Lys	100	101	100	100	101
Phe:Lys	50	61	57	58	54 ⁽³⁾
(Phe + Tyr):Lys	95	94	100	93	-
Tyr:Lys	-	-	-	-	40
His:Lys	32	32	34	34	31

Milkiwean Vital Start: feed solutions Amino acid ratios

Summary of results field trials (AMINOPT)

Growth

Study	n	Mort.	Medication	
NL2a	350	2,6	Non	—
NL2B	350	1,1	Non	
Canada 2	768	0,5	Ab	 1
Spain	400	7,1	AB+ZnO	**
NL1b	170	2,9	Non	*
Canada1	768	2,6	Ab	 ■ **
NL1a	528	1,7	Non	
Overall	3334	2,4		

0.1

0.05

Mean difference FE

0.15

Feed efficiency

Study	n	Mort.	Medication		
NL2b	350	1,1	Non	-	-1
NL1a	528	1,7	Non	-	-1
Canada1	768	2,6	Ab	-	— —
Canada2	768	0,5	Ab	-	-
NL1b	170	2,9	Non	-	
NL2a	350	2,6	Non	F	I
Spain	400	7,1	AB+ZnO		
Overall	3334	2,1			

Feed intake

Study	n	Mort.	Medicatio	n	
NL2a	350	2,6	Non	-	 1
Spain	400	7,1	AB+ZnO	l	 1
NL1b	170	2,9	Non	-	•—— •
Canada2	768	0,5	Ab	I —	
NL2b	350	1,1	Non	l-	-
NL1a	528	1,7	Non	-	-
Canada1	768	2,6	Ab		*
Overall	3334	2,1			

Mortality

	•			
Study	n	Mort.	Medication	
Spain	400	7,1	AB+ZnO -	**
Canada1	768	2,6	Ab ⊢■−	*
NL2a	350	2,6	Non	*
NL1b	170	2,9	Non -	
NL1a	528	1,7	Non	
Canada2	768	0,5	Ab	
NL2b	350	1,1	Non	
Overall	3334	2,1	*	

-5

Mean difference Mortality

Mean difference FI

10

Fibres

Fibres analysis

Non-Digestible Oligosaccharides

Soluble Hemicellulose

Resistant Starch

Insoluble Hemicellulose

Cellulose

Lignin

Milkiwean Vital Start: feed solutions Fibre

Effect	sol. fibres	insol. fibres	-
Fibre source	Pectin	Wheat bran	Inulin / oligofructose
	Guar gum	Cellulose	
Fermentation	++	0/+	++
pH chyme	↓	0	\
Stomach emptying	↓	↓?	?
Rate of passage	↓	↑	?
Weight mucosa	↑	?	↑
Binding of bile salts	+	0	?
Weight faeces	0	↑	↑
Glucose absorption	More gradual	0	More gradual

Milkiwean Vital Start: feed solutions Fibre

Physiological effects

Fibres and their effect on scouring

Fibre effect

Specialty ingredients

Our Swine Health strategy

different mechanism for achieving gut health

Our Swine Health strategy

different mechanism for achieving gut health

Reduce buffer capacity of feed

Strong acidifiers

- Formic acid and Fumaric acid strongest acidifiers
- Formic acid 34% higher acid equivalent
- Formic acid 60% cheaper compared to Fumaric acid

Our Swine Health strategy

different mechanism for achieving gut health

Acidifiers

Gut health modifier

Phenolic Compounds positively influencing tight junction

Tight junctions bind cells together

- thereby forming a barrier that prevents molecules from getting through
- helps to maintain the polarity of cells.

The phenolic compound supports the intestinal barrier integrity, shown by an upregulated expression of tight junction proteins

CLD-1 & CLD-5

Our Swine Health strategy

different mechanism for achieving gut health

Antibacterial effect of organic acids

Selko laboratory Tilburg and Trouw Nutrition Masterlab Boxmeer – based on in vitro (MIC) studies from 2010 to 2019

	Gram- bacteria	Gram+ bacteria
Formic acid	+++	+
Citric acid	++	-
Sorbic acid	++++	+++
Benzoic acid	++++	++
Lactic acid	+++	-
Propionic acid	++	+
Acetic acid	+	+
Fumaric acid	++	+
C8	++++	+++
C10	++++	+++
C8, C10 mix	+++++	++++
C12	-	++++
tic8,1C10, C12 mix	++++	+++++

Synergistic antibacterial effect of blends

In vitro lab testing

- Single ingredients
- Blends or acids
- --> Compare measured result with calculated result

Lab results show a synergistic antibacterial effect of blends of organic acids

																													type II (IB		
		Voor resetie	na reactie (final product	MIC %	MIC	(T=240 0.5	0.5 0.5	HC (T=4 0.5	50 (T=4 0.5	HC (T=24) 0.25	.50 (T=2- 0.25	0.25	50 (T=2 0.25	0.25	0.25	C (T=2 0.25	0.25	0.25	0.25	0.25	0 (T= 2) 0.25	0.25	0 (T=20 0.25	0.25	0 (T=2) 0.25	0.25	50 (T=2 0.25	0.25	0.125	IC (T=2	50 (T= 0.25
	Acetic sold 80% Liq	11.8	3.44			7.86	7.86	7.86	7.86	3.93	3.93	3.93	3.93					3.93				3.93			3.83	3.93	3.93	3.93	1.97	3.93	3.93
	Ammonia 25% Liq Formic acid 85% Liq	27.2																													
	Formic sold 93% Liq	4.7		_																											
	Lactic acid 80% Liq Food Propeless alecol 33% Liq	0.3	0.8			0.44	0.44	0.44	0.44	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.11	0.22	0.22
HP Fysal Liq	Propionic acid 33% Liq	15.5	15.35	5		10.33	10.33	10.33	10.33	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	5.16	2.58	5.16	5.16
	IHP Sorbic scid	0.5	0.5			0.22	0.22	0.22	0.22	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.06	0.11	0.11
	Water IHP Citric Ascorbic Acid I	0.5 0.2	29.61																												
	an cital riscordic ricid i		0.01																												
	Vrije formic acid Ammonium formate		18.83 25.17			20.45	20.45	20.45	20.45	10.23	10.23	10.23	10.23		10.23	10.23	10.23	10.23	10.23		10.23	10.23			10.23	10.23	10.23	10.23	5.11 4.99	10.23	10.23
	Anmonus rormate		100			53.47	59.47	59.47		29.74	29.74					29.74	29.74	29.74						29.74		23.74		29.74	14.87	29.74	23.
					Conver	99.10	99.10	33.10	33.10	128.83	128.83	****	2222	****	2222	****	2222	****	2222	****	2222	****	8888	****	8888	****	2222	****	143.70	****	128.8
						obscill	er nisers	ree (IRC	-MC00	his coli -	FA (IRC-	coli - F	sei m	Fateriti	as och		riam (II	ratunki	R ises	Heidelb	era (III)	Infanti	e and	nerfrine	ese (II	nerfrine	nens (III	can cain	type II (IR	a ania t	tene D
					MIC	(T=240	C50 (T=24	HIC (T=4	50 (T=4	IIC (T=24	50 (T=2	IC (T=2	50 (T=2	C (T=25	60 (T=2	C (T=2	50 (T=2	IC (T=2	50 (T=2	C (T=2	60 (T=20	C (T=2	0 (T=20	C (T=2	0 (T=2	C (T=2	50 (T=2	IC (T=2	C50 (T=24)	IC (T=2	50 (T:
	Acetic scid 80% Liq	Voor reactie	na reactie (final product) 9	MIC %		0.5 7.49	0.25	7,49	0.25	0.25	0.25	0.25 3.75	3.75	0.25	3.75	3.75	0.25 3.75	0.25 3.75	3.75	0.25	0.25 3.75	3.75	0.25	0.125	1.87	0.125	0.125	0.25 3.75	0.125	0.25	0.125
	Ammonio 25% Liq	22	Ť																												
	Benzoic Acid 33% Flakes Copper sulphate 5ag 25%	0.5 0.88	0.5 0.22			0.20	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.05	0.05	0.05	0.05	0.10	0.05	0.10	0.05
	Formic acid 85% Liq	26.21	0.22	Σ		0.04	0.02	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01
IHP Salko PH	Formic acid 99% Liq Emulsifier Polysorbate 80	23,41	0.3			0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00
EU EU	Propionic acid 33% Liq	0.3 15.3	15.15			10.23	5.11	10.23	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	5.11	2.56	2.56	2.56	2.56	5.11	2.56	5.11	2.56
	Zinc acetate 2aq 30%	0.2	0.2	Σ		0.05	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01
	IHP Citric Ascorbic Acid I water	0.1	0.1 23.49																												
	Phije formic sold Ammonium formate		30.59 20.36			33.23 16.14	16.61	33.23 16.14	16.61	16.61 8.07	16.61	16.61 8.07	16.61	16.61	16.61	16.61	16.61	16.61 8.07	16.61	16.61	16.61	16.61	16.61	8.31 4.04	8.31	8.31 4.04	8.31 4.04	16.61	8.31 4.04	16.61	8.31 4.04
			100		SUM	67.40	33.70 124.87	67.40		33.70 124.87		33.70		33.70		33.70		33.70		33.70		33.70		16.85		16.85		33.70	16.85	33.70	16.8
					Conver	91.17	124.87	91.17	2222	124.81	124.81		2222	****	2222		2222		3333				8888	61.72	161.72	141.72	161.72		141.72		161.1
					ec.	tobacil	lles plants	erem (IR	C-MC00	:hia coli -	F4 (IRC	coli -	ESBL (I	Enterit	tidis (IF	Typhin	grism (I	Iratyphi	Вјата	Heidell	berg (IA	la Infan	tis (IRC	perfri	gens (II	perfri	gens (liccus sui:	s type II (II	Rus suis	type
		Voor reactie	na reactie (final product	E MIC 2	MIC	0.25	0.25	0.25	0.25	O.25	0.25	0.25	0.25		0.25	0.25	0.25	0.25	0.25	#C (T=2 0.25	0.25	IC (T=2 0.25	0.25	0.125	0.125	0.125		#C (T=2 0.0625	0.03125	0.0625	2 50 (T 0.06
	Acetic scid 80% Liq	9.85	7.88	В		3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	3.28	1.64	1.64	1.64	1.64	0.82	0.41	0.82	0.8
	Ammonis 25% Liq Emulsifier Bredol 65	9.5	17.5																												
	Formic acid 85% Liq	15.6																													
	Formic scid 99% Liq MCFA C8C10	13.1	C8 7.2	ΣE		1.25	1.25	1.25	1.25	1.25	1.25	1.25	125	1.25	1.25	1.25	1.25	1.25	125	125	1.25	1.25	125	0.62	0.62	0.62	0.62	0.31	0.16	0.31	0.2
			C10 5.8	Ε.		0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.43	0.43	0.43	0.43	0.21	0.11	0.21	0.2
P Selko 4 Heal	MCFA C8C10C12	7.5	C12 1.8			0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.12	0.12	0.12	0.12	0.06	0.03	0.06	0.0
	Propylene glycol 99% Liq Propionic scid 99% Liq	18,9	18.7			6.31	6,31	6.31	6,31	6.31	6,31	6.31	6.31	6.31	6.31	6.31	6.31	6.31	6.31	6.31	6.31	6.31	6.31	3.16	3.16	3.16	3.16	1.58	0.79	1.58	1.5
	IHP Sorbic soid	0.45	0.45			0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.05	0.05	0.05	0.05	0.03	0.01	0.03	0.0
	water		11.76	5																											
	Phije formic scid		19.81			10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	10.76	5.38	5.38	5.38	5.38	2.69	1.34	2.69	2.6
	Ammonium formate		8.75			26,31	26,3	3.49		3,49 26,31		3,49	3.49	3.49 26.31		3,49	3.49	3.49		3,49		3,49		13.16	1.74	1.74	1.74	0.87 6.58	0.44	0.87	
		C8	7.2		Conver 1	32.26	132.20	132.26	2222	132.26	132.26		2222		8888	****	2222		2222		2222	****	2222	145.41	145.41	145.41	145.41	151.99	155.28	8 151.99	151.
		C10	5.8 1.8																												
																								-							
					MIG	<i>tobacii</i> C (T=24	C50 (T=2	even (IR edilC (T=4	C-MC00	AIC (T=24	F4 (IRC C50 (T=2	Coli -	ESBL (I	Esterit	50 (T=2	Typhin IC (T=2	SO (T=	iratypai aC (T=2	B java	Heidell	50 (T=2	IC (T=2	50 [T=2	perfrie	gens (II 50 (T=2	perfrii	gens (CCUS SUI	s type II (II IC50 (T=24	Rus suis IC (T=2	2 50 T
			na reactie (final product			1	0.5	1	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.125	0.125	0.0625	0.063	0.5	0.125	0.125	0.031
	Acetic seid 80% Liq Ammonis 25% Liq	12.95	10.36	5		22.25	11.12	22.25	22.25	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	2.78	2.78	1.39	1.39	11.12	2.78	2.78	0.7
	Citric acid Anh	0.3	0.3	3		0.16	0.08	0.16	0.16	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.02	0.02	0.01	0.01	0.08	0.02	0.02	0.0
	Formic scid 85% Liq	17.8		_																											
	Formic scid 99% Liq MCFA C8C10	7.5	C8 7,2	ΣE		4,99	2.50	4,99	4.99	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	0.62	0.62	0.31	0.31	2.50	0.62	0.62	0.1
			C10 5.8	E		3.42	1.71	3.42	3.42	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	0.43	0.43	0.21	0.21	1.71	0.43	0.43	0.1
		7.5	C12 1.8			0.95	0.47	0.35	0.35	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.12	0.12	0.06	0.06	0.47	0.12	0.12	0.0
Selacid GG L		13.9	13.76			18.57	9.29	18.57	18.57	9.29	9.29	9.29	9.29	9.29	9.29	3.23	9.29	9.29	9.29	9.29	9.29	9.29	9.29	2.32	2.32	1.16	1.16	3.23	2.32	2.32	0.5
Selacid GG L	Propylene glycol 99% Liq Propionic scid 99% Liq	0.55	0.55			0.49	0.25	0.49	0.49	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.06	0.06	0.03	0.03	0.25	0.06	0.06	0.0
' Selacid GG L	Propionic sold 39% Liq IHP Sorbic sold	0.55		3																											
Selacid GG L	Propionic scid 99% Liq	0.55	23.13				15.47	32.34	32.94	16.47	15.47	16.47	15.47	16.47	16.47	16.47	15.47	16.47	16.47	16.47	15.47	16.47	16.47	4.12	4.12	2.06	2.06	16.47	4.12	4.12	1.0
Selacid GG L	Propionic acid 39% Liq IHP Sorbic acid water Philip formic acid	0.55	15.16			32.94																									
Selacid GG L	Propionic acid 39% Liq IHP Sorbic acid water	0.55				32.94 34.33	17.17	34.33		17.17 59.05	17.17	17.17 59.05	17.17	17.17	59.05	59.05				59.05	59.05	59.05	59.05			7.38	2.15	17.17	4.23	4.29	
Selacid GG L	Propionic acid 39% Liq IHP Sorbic acid water Italia formic acid chamonium formate	C8	15.16 21.65 7.2	8	SUM	34.33			118.10		17.17 59.05 99.52		59.05		59.05 99.52		59.05	59.05 99.52	59.05		59.05 99.52		59.05	14.76 143.81	14.76		7.38 151.19		4.29 14.70 143.8		3.
Selacid GG L	Propionic seid 99% Liq IHP Sorbic seid water byjo formic seid Ammonium formate		15.16 21.65	2	SUM	34.33 118.10		5 118.10	118.10	59.05	17.17 59.05 99.52	59.05	59.05	59.05	59.05 99.52	59.05	59.05	59.05	59.05	59.05	59.05 99.52	59.05	59.05	14.76	14.76	7.38	7,38 151,18	59.05	14.70	5 14.76	3.

Type of blend	Factor synergistic effect
Single ingredient	0
Blend of 2 acids	1.1
Blend of > 2 acids	1.8

Our Swine Health strategy

different mechanism for achieving gut health

Block attachment & mucosal immune support

Hydrolyzed copra meal (MCM)

Contains Mannobiose

- Indigestible Disaccharide of Mannose
- *In vitro* binding affinity to Salmonella
- Supports a functional immune system

Fermented Rye (FR)

Rye overgrown with mycelium of Agaricus subrufescens

Contains: beta glucans, glycoproteins, bioactive peptides, prebiotics, phenolic compounds

- In vitro binding affinity to Salmonella and E.coli
- Supports a functional immune system
- Supports the growth beneficial bacteria

A better performance during *E.coli* challenged conditions

Conclusion: The acid blend + fysal Solute numerically increase feed intake and growth under E. coli challenged conditions.

Selection, monitoring and treatment of raw materials

Feed safety overview

Water

Milkiwean Vital Start: feed solutions Water

Milkiwean Vital Start: feed solutions Water

Gram negative bacteria (Salmonella, E.coli) struggle to survive at a pH below 4.

- Only water of drinking quality
- Use water acidification to support the weaned piglet stomach

MKW Vital Start in practice

Phase 0

Less than 14 days 1 g – 2 g/piglet

Phase 1

Less than 24 days 200 g – 1 kg/piglet

Phase 2

14-23 days Less than 5 kg/piglet

Phase 3

32-70 days Less than 20 kg/pig

Milk replacer

Creep Feed

Weaner Diet

LINK/Grower Diet

Concentrates

Vario Taste

Vario Protein

Vario Fiber

Vario Health

Thank you

